ADVANCED X-RAY IMAGING TECHNIQUES FOR NON-DESTRUCTIVE ANALYSIS OF FUSION MATERIALS

I. Tiseanu, T. Craciunescu and team

EURATOM-MEdC, National Institute for Lasers, Plasma and Radiation Physics NILPRP, Bucharest, Romania

http://tomography.inflpr.ro

e-mail: tiseanu@infim.ro

ASSOCIATION DAYS MEETING, IASI, July, 2010
INLPR experience in X-ray microCT for NDT inspection of fusion materials

X-RAY MICROTOMOGRAPHY for IFMIF

- IFMIF HFTM miniaturized specimens and irradiation capsule

X-RAY MICROTOMOGRAPHY for JET/ITER

- ITER- Compressed pebble bed
- ITER- Welded Steel Pipe with Cu cables
- ITER like Nb3Sn superconducting wires
- MgB2 superconducting wires
- JET reference CFC material NB31
- NDT inspection of tungsten coating uniformity
- NDT inspection of CFC / Cu/CuCrZr interfaces

http://tomography.inlpr.ro
Recently, the X-ray tube has been upgraded to state of the art nanofocus 225 kVp.

- X-ray source
 - 10 - 225 kV
 - Focus spot < 0.8 μm
- Detector
 - a-Si flat panel
 - 1210 x 1216 pixels
 - 0.1 x 0.1 mm²
- Six-axis, high precision manipulator
- Magnification factor ≤ 2000
X-ray transmission microtomography inspection of non-irradiated HFTM capsule (designed and manufactured at FZK)

Cross-section through the X-ray microtomography reconstruction and corresponding picture of the irradiation capsule, shown as a CAD model

Tomographic cross-section illustrating the gap (lack of thermal contact) between the heater coil and the groove channel.

Details are clearly visible as, for example, the heater tube (1 mm diameter) with interior tungsten wire (100 μm diameter).

The absolute error of geometrical measurements is sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description of the thermal-hydraulic modeling.

Brazing quality assessment

- samples with similar composition and even larger dimensions than the HFTM rig
- braze by nickel based filler metals used to high temperature base metals as in the HFTM rig.

ITHEX experimental facility (FZK)

- dedicated to thermal-hydraulic investigations concerning mini-channel geometries as applied in IFMIF.
- several mini-channel test sections are investigated in order to optimize the HFTM helium cooling technology.
- the mini-channel test sections can be heated by electrical heaters and are instrumented with thermocouples to measure the temperature distribution.
X-ray micro-tomography studies CFC samples for porosity network characterization

- Participation at DITS project - post mortem analysis by providing high resolution tomography measurements on CFC samples
- Qualification of the initial porosity of the new CFC ITER reference material NB41
- Porosity characterization of tungsten coated CFC samples
CFC Nb31: High resolution tomography

Sample size: ≥ 4x4x4 mm³

Voxel resolution

Offset tomography

14 µm

5 µm

2.5 µm

The main challenge is posed by the required micron range of the spatial resolution for rather macroscopic samples.
Quantitative evaluation of the CFC porosity factor

A procedure for a quantitative evaluation of the sample porosity factor has been introduced and tested. For example for CFC NB31 and CFC DMS780 we obtained porosity factors of 8-10%.

CFC NB31: 6 µm/voxel; porosity factor 8.05%

CFC DMS780: 6 µm/voxel; porosity factor 9.41%
Deuterium Inventory in Tore Supra (DITS) post mortem analysis
CFC-NB11

Voxel resolution ~ 2.8 µm

Cu brazed CFC NB11:
- pattern of Cu “filaments” along the fiber interspaces

Sample size: ≥ 2x2x5 mm³
Deuterium Inventory in Tore Supra (DITS) post mortem analysis
• Quantitative evaluation of the CFC porosity factor

CFC NB11: 2.8 µm/voxel; porosity factor ~13%
X-ray microbeam absorption/fluorescence method as a non-invasive solution for investigation of the erosion of W coatings on graphite/CFC

• Quantitative evaluation of the thickness/uniformity/erosion/deposition of the tungsten coatings on graphite tiles from ASDEX Upgrade and of the tungsten coatings on ITER-like CFC tiles. Marker probes of Al C Ni W will be also measured.
• Comparison with previous quantitative analysis with EPMA, RBS and NRA.
Elaboration of a technical concept for a compact/low cost instrument based on X-ray micro-fluorescence to be used in high productivity coating analysis.
Computer tomography (µCT) systems are configured to take many views of the object in order to build a 3-D model of its internal structure. For the NDT inspection of miniaturised samples the microtomography analysis is guaranteed for feature recognition down to a few tens of microns. 3-D tomographic reconstructions are obtained by a proprietary highly optimized computer code based on a modified Feldkamp algorithm.

The microbeam fluorescence (µXRF) component is a configurable film thickness and composition measuring tool. Main components: optical X-ray beam collimation options, a PIN diode X-ray detector, motorized micrometric x-y-z stage for accurate sample positioning.
Combined X-ray absorption/fluorescence method for erosion analysis

Post-mortem analysis of fine graphite coating for ASDEX Upgrade tiles (divertor)

X-ray fluorescence spectra of W on fine graphite

X-ray transmission map

The X-ray transmitted intensity was normalized to an average value of the transmission through the graphite. In this way we ignored the very low amount of redeposited W.

The red area corresponds the graphite stripe.

- the estimated lateral resolution: ~30 µm
- in-depth resolution: ~3% of the layer thickness.

Map of the tungsten layer thickness and line profiles (scanning step: 2 mm)
Combined X-ray absorption/fluorescence method for erosion analysis

The X-ray transmitted intensity was normalized to an average value of the transmission through the graphite. In this way we ignored the very low amount of redeposited W.
NDT inspection of superconductors

- ITER Like Nb3Sn Superconductor
- EFDA HT SC - Mgb2
- Quality Control Monitoring of NbTi Strands and Conductor for JT-60SA TF Coils
X-ray microtomography on ITER type Nb3Sn superconductor wires

- inter-filament contacts
- twist-pitch parameter

Reconstruction evidencing the twisted structure

The traditional method for measuring the filamentary twist pitch parameter consists of:

- lamination
- etching the copper in a nitric acid solution
evidencing the twisted structure despite of the Ta barrier.

Enhanced resolution: 1.2 μm

X-ray microtomography on MgB2 superconductor wires

- defects identification

X-ray microtomography images of the HYPERTech MgB2 wires

Structure and morphology of high density MgB2 superconductor

High density superconducting MgB2 is prepared using FAST (Field Assisted Sintering Technique) from very porous and mechanically weak mixture of Mg and B.

μCT can reveal clear differences between the samples helping the understanding of the milling-properties relationship (traditional techniques, like e.g. SEM proved to be insensitive)

TECHNICAL SPECIFICATION FOR QUALITY CONTROL MONITORING OF NBTI STRANDS AND CONDUCTOR FOR JT-60SA TF COILS: “EXTENDED GEOMETRY”

- a F4E-BA project -

NbTi strands tomographic examination in 3D configuration

<table>
<thead>
<tr>
<th>#</th>
<th>Output data</th>
<th>Unit</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Twist pitch average</td>
<td>mm</td>
<td>1 digit</td>
</tr>
<tr>
<td>2</td>
<td>Twist pitch standard deviation</td>
<td>mm</td>
<td>2 digits</td>
</tr>
<tr>
<td>3</td>
<td>Barrier average thickness</td>
<td>µm</td>
<td>1 digit</td>
</tr>
<tr>
<td>4</td>
<td>Barrier thickness standard deviation</td>
<td>µm</td>
<td>2 digits</td>
</tr>
<tr>
<td>5</td>
<td>Strand average volume for 1m of strand</td>
<td>mm³</td>
<td>1 digit</td>
</tr>
<tr>
<td>6</td>
<td>Strand volume standard deviation for 1m of strand</td>
<td>mm³</td>
<td>1 digit</td>
</tr>
<tr>
<td>7</td>
<td>SC average volume for 1m of strand</td>
<td>mm³</td>
<td>1 digit</td>
</tr>
<tr>
<td>8</td>
<td>SC volume standard deviation for 1m of strand</td>
<td>mm³</td>
<td>1 digit</td>
</tr>
</tbody>
</table>
3D tomography measurements on cable and soldered junctions between superconducting cables

Application: JT60SA a F4E-BA project

CT technique is able to detect a flow size well under 10% of the wall thickness of the cable stainless steel jacket (see images below). Based on this result we propose that microCT should be employed in the development and manufacturing of superconducting cables. Thus one can provide strand trajectories map of a conductor sample on at least one twist pitch (cca. 300 mm) in order to check the void homogeneity during production.

<table>
<thead>
<tr>
<th>#</th>
<th>Output data</th>
<th>Unit</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Void fraction average</td>
<td>%</td>
<td>1 digit</td>
</tr>
<tr>
<td>2</td>
<td>Void fraction standard deviation</td>
<td>%</td>
<td>2 digits</td>
</tr>
<tr>
<td>3</td>
<td>Void homogeneity factor</td>
<td>adimensional</td>
<td>2 digits</td>
</tr>
<tr>
<td>4</td>
<td>Cos teta</td>
<td>adimensional</td>
<td>3 digits</td>
</tr>
<tr>
<td>5</td>
<td>Strand trajectories</td>
<td>(mm)3</td>
<td>1 digit</td>
</tr>
<tr>
<td>6</td>
<td>Interstrand contacts linear density</td>
<td>m$^{-1}$</td>
<td>1 digit</td>
</tr>
</tbody>
</table>